Date: August 21, 2025 Purpose: Database startup integration into multi-agent orchestration workflows Status: â IMPLEMENTED - Database availability now automatic in coordination deployment Methodology: Excellence Flywheel - Find existing patterns before creating new ones
Mission: Integrate database startup into multi-agent orchestration workflows Objective: Make database availability automatic in multi-agent coordination Success Criteria: Database startup becomes standard part of coordination deployment Methodology: Find existing patterns before creating new ones
deploy_staging.sh)pg_isready with retry logic and start periodsInstead of creating new database startup logic, we leveraged existing patterns:
docker-compose.yml configurationcheck_and_start_database() FunctionPurpose: Automatically start database services if not running Pattern: Leverages existing Docker Compose configuration Features:
Implementation:
# Function to check and start database services
check_and_start_database() {
print_status "INFO" "Checking database availability and starting if needed..."
# Check if Docker is available
if ! command_exists docker; then
print_status "WARNING" "Docker not found. Skipping database startup."
print_status "INFO" "Please ensure PostgreSQL is running manually for full functionality."
return 0
fi
# Start database services in background
docker-compose up -d postgres redis chromadb
# Wait for database to be ready with health checks
while [ $attempt -le $max_attempts ]; do
if docker exec piper-postgres pg_isready -U piper -d piper_morgan >/dev/null 2>&1; then
print_status "SUCCESS" "PostgreSQL ready after ${attempt}s"
break
fi
sleep 2
((attempt++))
done
}
validate_database_connection() FunctionPurpose: Validate database connectivity after startup Pattern: Uses existing database connection testing approach Features:
Implementation:
# Function to validate database connection
validate_database_connection() {
print_status "INFO" "Validating database connection..."
# Check if we can connect to the database
if python3 -c "
import sys
sys.path.insert(0, '.')
try:
from services.database.connection import db
import asyncio
async def test_connection():
await db.initialize()
async with db.engine.connect() as conn:
result = await conn.execute('SELECT 1')
print('Database connection successful')
await db.close()
asyncio.run(test_connection())
except Exception as e:
print(f'Database connection failed: {e}')
sys.exit(1)
" 2>/dev/null; then
print_status "SUCCESS" "Database connection validated"
return 0
else
print_status "WARNING" "Database connection validation failed"
return 1
fi
}
Database functions are now integrated into the main deployment sequence:
# Main deployment function
main() {
# Pre-deployment checks
check_python_env
check_dependencies
# Database startup and validation
check_and_start_database
validate_database_connection
validate_current_state
# ... rest of deployment
}
| Metric | Target | Implementation |
|---|---|---|
| Database Startup Time | <60s | Health checks with 30 max attempts, 2s intervals |
| Database Health Check | <5s per service | Optimized health check commands |
| Connection Validation | <10s | Direct SQLAlchemy connection test |
| Graceful Degradation | 100% | Fallback to manual database startup if Docker unavailable |
PostgreSQL Health Check:
# Health check with retry logic
test: ["CMD-SHELL", "pg_isready -U piper"]
interval: 10s
timeout: 5s
retries: 5
start_period: 30s
Redis Health Check:
# Health check with authentication
test: ["CMD", "redis-cli", "--no-auth-warning", "-a", "${REDIS_PASSWORD}", "ping"]
interval: 10s
timeout: 5s
retries: 3
start_period: 15s
Environment Validation â
Database Integration đ
System Validation â
Component Deployment â
System Updates â
Testing & Validation â
Start Deployment
â
Check Docker Availability
â
Verify Database Services Status
â
Start Services (if needed)
â
Wait for Health Checks
â
Validate Database Connection
â
Continue with Deployment
Scenario 1: Docker Not Available
Scenario 2: Database Startup Timeout
Scenario 3: Connection Validation Failure
Automatic Recovery:
Manual Recovery:
# Deploy with automatic database startup
../scripts/deploy_multi_agent_coordinator.sh
Expected Output:
đ Multi-Agent Coordinator Deployment Script
=============================================
âšī¸ Checking Python environment...
â
Python environment ready
âšī¸ Checking required dependencies...
â
All dependencies satisfied
âšī¸ Checking database availability and starting if needed...
âšī¸ Starting database services...
âšī¸ Waiting for database services to be ready...
â
PostgreSQL ready after 12s
â
Database services started and ready
âšī¸ Validating database connection...
â
Database connection validated
...
# If database is already running
../scripts/deploy_multi_agent_coordinator.sh
Expected Output:
âšī¸ Checking database availability and starting if needed...
â
PostgreSQL already running
âšī¸ Validating database connection...
â
Database connection validated
...
# If Docker is not available
../scripts/deploy_multi_agent_coordinator.sh
Expected Output:
âšī¸ Checking database availability and starting if needed...
â ī¸ Docker not found. Skipping database startup.
âšī¸ Please ensure PostgreSQL is running manually for full functionality.
âšī¸ Validating database connection...
â ī¸ Database connection validation failed
...
Database Configuration (from existing .env files):
# PostgreSQL
POSTGRES_USER=piper
POSTGRES_PASSWORD=dev_changeme_in_production
POSTGRES_DB=piper_morgan
# Redis
REDIS_PASSWORD=your_redis_password
# ChromaDB
CHROMA_SERVER_HOST=0.0.0.0
CHROMA_SERVER_PORT=8000
Service Dependencies:
services:
app:
depends_on:
postgres:
condition: service_healthy
redis:
condition: service_healthy
Health Check Configuration:
healthcheck:
test: ["CMD-SHELL", "pg_isready -U piper"]
interval: 10s
timeout: 5s
retries: 5
start_period: 30s
Database Health:
# Check database service health
docker ps --format "table \t\t"
# Check database connection
curl "http://localhost:8001/api/orchestration/multi-agent/health"
Performance Metrics:
# Get coordination performance metrics
curl "http://localhost:8001/api/orchestration/multi-agent/metrics"
Database Startup Logs:
# View database service logs
docker logs piper-postgres
docker logs piper-redis
docker logs piper-chromadb
# View deployment logs
tail -f DEPLOYMENT_SUMMARY.md
Status: â MISSION ACCOMPLISHED - Database integration completed successfully Next: Performance optimization and monitoring integration Timeline: Database startup now automatic in all coordination deployments